Response of soil physical properties following the application of soil restoration techniques on machine operating trails

Siegfried Waas, Eric R. Labelle and Herbert Borchert

52. International Symposium on Forest Mechanisation, 7 October 2019, Sopron, Hungary
Introduction
Research objectives

• To compare and to quantify the potential of two soil restoration techniques on heavily compacted and damaged machine operating trails.

• To gain a first insight on the influence of technical restoration techniques on soil physical processes.

• To carry out time studies in order to calculate productivity and costs of the two different treatments.
Study Design
Soil restoration techniques

T1: Wheel ruts were filled, leveled and then packed with a tracked excavator and mechanically loosened and aerated by a soil tillage machine.

T2: Wheel ruts were filled, leveled and packed with a tracked excavator.
Soil aerator

OWR MM 100 (3-point tractor attachment)
- Ceased in the early 1990s
- Four spades that are spaced by 60 cm
- Spades: Width of 15 cm and a length up to 100 cm
- Weight: 2,000 kg and a working width of 2.0 m

Fendt 936 Vario
- Operating weight of 10,300 kg
- Engine power of 265 kW (355 hp)
- Width of 2.75 m and a length of 5.65 m
- Equipped with a 1,800 kg counter weight
Response of soil physical properties following the application of soil restoration techniques on machine operating trails
Field sampling and instruments

Tested soil properties:

- Standard Proctor
- Grain size distribution
- Plastic and liquid limits
- Resistance to penetration
- Bulk density
- Pore volume
- Air conductivity
- Infiltration rate
- Water conductivity
Soil penetration resistance

Trail 1
- **Pre-Impact**
 - Ø MC (pre) = 42.1%
 - Depth [cm]: 0, 10, 20, 30, 40
 - Mean Penetration Resistance [MPa]: 10

Trail 2
- **Pre-Impact**
 - Ø MC (pre) = 26.4%
 - Depth [cm]: 0, 10, 20, 30, 40
 - Mean Penetration Resistance [MPa]: 20

Trail 3
- **Pre-Impact**
 - Ø MC (pre) = 17.1%
 - Depth [cm]: 0, 10, 20, 30, 40
 - Mean Penetration Resistance [MPa]: 30

Trail 1: Between Track
- **Pre-Impact**
 - Ø MC (pre) = 44.6%
 - Depth [cm]: 0, 10, 20, 30, 40
 - Mean Penetration Resistance [MPa]: 40

Trail 2: Between Track
- **Pre-Impact**
 - Ø MC (pre) = 25.4%
 - Depth [cm]: 0, 10, 20, 30, 40
 - Mean Penetration Resistance [MPa]: 50

Trail 3: Between Track
- **Pre-Impact**
 - Ø MC (pre) = 25.6%
 - Depth [cm]: 0, 10, 20, 30, 40
 - Mean Penetration Resistance [MPa]: 60
Soil bulk density and Pore volume
Productivity and costs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavator: CAT 314 E</td>
<td>40.00</td>
<td>40.00</td>
<td>80.00</td>
<td>0.72</td>
</tr>
<tr>
<td>Aeration: Fendt + OWR MM 100</td>
<td>40.00</td>
<td>245.00</td>
<td>285.00</td>
<td>0.74</td>
</tr>
</tbody>
</table>

| Treatment 1 (Tracked excavator + OWR MM100) | 1.46 €/m |
| Treatment 2 (Tracked excavator) | 0.72 €/m |

- **a)** Backward working excavator.
- **b)** Soil aeration with double processing per trail.

WaaS et al. Response of soil physical properties following the application of soil restoration techniques on machine operating trails
Conclusion and outlook