Optimal transport scheduling: Demonstration of Capability and Potential Gains with FastTRUCK

Mauricio Acuna - FIRC
University of the Sunshine Coast, Australia

Glen Murphy
G.E. Murphy & Associates, New Zealand
Outline

● Objectives of the study

● Background (truck scheduling)

● Methodology (data sets, FastTRUCK tool, scenarios modelled)

● Results (tasks completed, trucks utilised, utilisation, unit cost)

● Conclusions and Recommendations
Objectives

- Demonstrate the versatility of FastTRUCK (truck scheduling tool) by applying it to a set of real scenarios

- Compare actual with predicted performance metrics for a typical day of transport operations

- Provide recommendations to improve the utility of FastTRUCK for use by forest companies
Some companies in Australasia harvest and deliver millions of cubic meters per year. This represents thousands of truck trips per year from coupes to customers which have to be optimally scheduled to reduce costs and meet their demand.

Transport of logs from forest to customer (mills or ports) is a significant cost component in the life cycle of a forest. Reductions in transportation costs ranging between 5 and 30%, as a result of optimal allocation of trucks to routes, have been reported in the literature.

Heuristic procedures, which provide near optimal solutions, have been implemented by some forest companies because of their much faster and more acceptable solution times compared with MIP.
Background - Daily truck scheduling problem

1 truck, 4 forests, 6 customers, 3 trips = 14,000 possibilities

3 trucks, 4 forests, 6 customers, 5 trips = 24,000,000 possibilities!!!

Source: Skogforsk
FastTRUCK provides a near optimal solution based on a simulated annealing (SA) algorithm which allocates transport tasks to trucks in order to minimize transport costs.

Methodology – Study location
- The forest company selected a representative day against which the solutions from FastTRUCK were compared.

- On the representative day 173 tasks (delivery of a load of wood from forest coupe to customer) were selected for inclusion in the project scenarios.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>173</td>
</tr>
</tbody>
</table>
Methodology – FastTRUCK tool

Input data visualization

Algorithm parameters

Operational settings

Performance metrics

Output charts
Methodology – FastTRUCK’s data requirements

1. The number of depots at which trucks are based
2. Individual truck data (truck type, their depots, payload, shift length, start and stop shift times, and costs)
3. Coupe (harvest unit) ID’s, opening and closing times with respect to loading, loading times for each truck type
4. Customer ID’s, earliest and latest unloading times, unloading times for each truck type
5. Tasks that have to be completed (where a task is delivery of a load of logs of a specific product from a specific forest coupe to a specific customer)
6. Nomination of which trucks are capable of undertaking which tasks
7. Travel distances and travel times from each depot to each coupe
8. Travel distances and times from each coupe to each customer
9. Travel distances and times from each customer to each coupe
10. Travel distances and times from each customer to each depot.

All data was supplied by forest company
Methodology – Scenarios modelled

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Waiting Time Assumption</th>
<th>Total Trucks Available</th>
<th>Trucks by Depot Location</th>
<th>Trucks by Shift Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Representative day</td>
<td>Yes</td>
<td><70</td>
<td></td>
<td>12 N&D</td>
</tr>
<tr>
<td>1a: Base Case</td>
<td>Yes</td>
<td>60</td>
<td>47 Depot 1, 13 Depot 2</td>
<td>12 N&D</td>
</tr>
<tr>
<td>1b: Base Case</td>
<td>No waiting</td>
<td>60</td>
<td>47 Depot 1, 13 Depot 2</td>
<td>12 N&D</td>
</tr>
<tr>
<td>2: Fewer Trucks</td>
<td>No waiting</td>
<td>52</td>
<td>42 Depot 1, 10 Depot 2</td>
<td>10 N&D</td>
</tr>
<tr>
<td>3a: Additional Night-and-day trucks</td>
<td>Yes</td>
<td>64</td>
<td>51 Depot 1, 13 Depot 2</td>
<td>16 N&D</td>
</tr>
<tr>
<td>3b: Additional Night-and-day Trucks</td>
<td>No waiting</td>
<td>64</td>
<td>51 Depot 1, 13 Depot 2</td>
<td>16 N&D</td>
</tr>
<tr>
<td>4a: Additional Trucks in Depot 2</td>
<td>Yes</td>
<td>64</td>
<td>47 Depot 1, 17 Depot 2</td>
<td>13 N&D</td>
</tr>
<tr>
<td>4b: Additional Trucks in Depot 2</td>
<td>No waiting</td>
<td>64</td>
<td>47 Depot 1, 17 Depot 2</td>
<td>13 N&D</td>
</tr>
</tbody>
</table>
Results: General observations

- A validation of predicted round-trip times with actual times indicated that predicted times on average were about 12 minutes lower per trip than actual times. Assumed activity times by company were too tight.
- Solution times were generally obtained within 5 to 7 minutes, once the scenarios were set up. Solutions were sensitive to how waiting time was handled in the modelling process.
- FastTRUCK predicted average waiting times of up to 64 minutes per day per truck. Under these predicted conditions the 173 tasks could not be completed. Modelling the scenarios with shorter load and unload times, and no waiting at customer sites yielded solutions that would complete all 173 tasks with 54 or 55 trucks.
- Adding extra night-and-day trucks, or locating extra trucks at Marlborough lead to increases in the number of tasks completed and the predicted run loaded percent for those scenarios where waiting time was included
Results: Tasks completed & trucks utilised by scenario

Scenarios

0. Representative day
1a. Base case – Waiting
1b. Base case – No waiting
2. Fewer trucks – No waiting
3a. Additional N&D trucks – Waiting
3b. Additional N&D trucks - No waiting
4a. Additional trucks Depot 2 – Waiting
4b. Additional trucks Depot 2 – No waiting
Results: Run loaded %, utilisation %, and cost per tonne by scenario

Scenarios

0. Representative day
1a. Base case – Waiting
1b. Base case – No waiting
2. Fewer trucks – No waiting
3a. Additional N&D trucks – Waiting
3b. Additional N&D trucks - No waiting
4a. Additional trucks Depot 2 – Waiting
4b. Additional trucks Depot 2 – No waiting
Conclusions & Recommendations

- The versatility of the FastTRUCK scheduling tool was demonstrated by applying it to four sets of scenarios.

- FastTRUCK provides optimized schedules for individual trucks based on minimizing average unit costs. It also reports the average run loaded percent for the truck fleet, a metric of particular interest to forest companies.

- FastTRUCK indicated that improvements of up to 3% in run loaded percent, compared with that from the representative day, were attainable depending on the scenario being modelled.
Conclusions & Recommendations

- A closer look should be taken into the accuracy of the travel data and loading/unloading data. The number of machines available at each customer’s site for unloading should also be quantified.

- The impact on task completion of staggered starting times and on-carts should be investigated.
Dr. Mauricio Acuna

• Forest Industries Research Centre
 University of the Sunshine Coast (USC)

• Email: macuna@usc.edu.au