How does soil compaction influence the growth of spruce seedlings?

Eric R. Labelle and Max Kammermeier
Sopron, Hungary, 08.10.2019
Presentation roadmap

- Relative bulk density concept
- Methods with focus on compaction procedure
- Overview of main results
Machine and soil interaction

- Impacts of forest machines on their operating environment has been well researched.

- Not uncommon to experience 15–20% increases in absolute soil bulk density between pre and post impact.

- More operations are performed on un-frozen soils or soils with high moisture content.
Relative bulk density

- Concept developed in geotechnique as a measure of quality control of the bearing layer of roads.

\[\text{RBD} = \frac{\text{FBD}}{\text{MBD}} \]

- In 1990, Carter tested the effect of varying RBD's on the growth of agricultural crops and reported reduced growth beyond 80% of the MBD.

- What about high value tree species found in Germany?
Relative bulk density

MBD = 1.61 g/cm³ or 15.8 kN/m³
OMC = 18.8%
Assistant Professorship of Forest Operations
TUM School of Life Sciences Weihenstephan
Technical University of Munich

Testing

- 24 chamber system (42 cm × 30 cm × 8 cm)
- 4 RBD thresholds (0.67, 0.72, 0.77, 0.82)
- RBD thresholds were randomly assigned to each chamber
Compaction procedure

- Added required amount of wet soil to reach desired density, based on the volume per lift.

- Used load frame to apply vertical force needed to compact the lift to target height (12.3 cm).

- Applied same procedure for two additional lifts of equal heights.

6 chambers at 0.67 (1.08 g cm$^{-3}$)
6 chambers at 0.72 (1.16 g cm$^{-3}$)
7 chambers at 0.77 (1.24 g cm$^{-3}$)
5 chambers at 0.82 (1.32 g cm$^{-3}$)
In-situ root growth monitoring

- Scanning frequency of once per 4–5 days as soon as roots were visible.
- High resolution scans at 1,200 dpi (±30 MB/scan).
- Identical positioning of chamber in scanning frame.
Results

Root depth = 5 cm

RBD of 0.67
Results

Root depth = 6.8 cm

Root growth = 1.8 cm
Results

Root depth = 27.4 cm

Root growth = 2.4 cm

Growth of 22.4 cm in 55 days (0.4 cm day\(^{-1}\))

RBD of 0.67
Extraction
Response of biomass to varying RBD levels

Average dry mass per seedling (mg)

48% reduction

Relative bulk density

43% reduction
Root length, root collar and shoot height

Root length (cm)

<table>
<thead>
<tr>
<th>RBD levels</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Std. Dev. a</th>
<th>Percent difference to RBD 0.67</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>9.34</td>
<td>65.17a</td>
<td>141.92</td>
<td>38.69</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>0.72</td>
<td>2.77</td>
<td>49.41ab</td>
<td>173.21</td>
<td>46.20</td>
<td>-24.18</td>
<td>25</td>
</tr>
<tr>
<td>0.77</td>
<td>6.09</td>
<td>35.28b</td>
<td>86.78</td>
<td>21.19</td>
<td>-46.86</td>
<td>32</td>
</tr>
<tr>
<td>0.82</td>
<td>10.93</td>
<td>30.44b</td>
<td>67.87</td>
<td>18.59</td>
<td>-53.29</td>
<td>21</td>
</tr>
</tbody>
</table>

Root collar diameter (mm)

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Std. Dev. a</th>
<th>Percent difference to RBD 0.67</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>0.93</td>
<td>1.52a</td>
<td>2.30</td>
<td>0.29</td>
<td>-</td>
</tr>
<tr>
<td>0.72</td>
<td>0.74</td>
<td>1.40a</td>
<td>3.12</td>
<td>0.56</td>
<td>-8.27</td>
</tr>
<tr>
<td>0.77</td>
<td>0.75</td>
<td>1.36a</td>
<td>2.41</td>
<td>0.37</td>
<td>-10.94</td>
</tr>
<tr>
<td>0.82</td>
<td>0.92</td>
<td>1.35a</td>
<td>2.22</td>
<td>0.40</td>
<td>-11.12</td>
</tr>
</tbody>
</table>

Shoot height (cm)

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Std. Dev. a</th>
<th>Percent difference to RBD 0.67</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>3.20</td>
<td>6.10a</td>
<td>10.20</td>
<td>1.81</td>
<td>-</td>
</tr>
<tr>
<td>0.72</td>
<td>2.90</td>
<td>5.95a</td>
<td>12.60</td>
<td>2.18</td>
<td>-2.49</td>
</tr>
<tr>
<td>0.77</td>
<td>2.80</td>
<td>5.53a</td>
<td>10.10</td>
<td>1.81</td>
<td>-9.39</td>
</tr>
<tr>
<td>0.82</td>
<td>2.70</td>
<td>4.90a</td>
<td>7.30</td>
<td>1.26</td>
<td>-19.80</td>
</tr>
</tbody>
</table>
Root growth – per diameter class

![Box plots showing average root length per seedling (cm) for different diameter classes and relative bulk density levels.](image)

- **<0.10 mm**: Lower average root length, no significant differences between treatments.
- **0.10–0.20 mm**: Increased average root length, with significant differences between treatments marked by different letters.
- **0.21–0.30 mm**: Further increase in average root length, with consistent differences.
- **0.31–0.40 mm**: Similar pattern as previous classes.
- **0.41–0.50 mm**: Additional increase in root length and more pronounced treatment effects.
- **0.51–1.00 mm**: Highest root length with marked differences between treatments.

Note: Treatments marked with different letters indicate significant differences.
Future work…one of the missing links

- What does this imply for forest operations?

- How can we be proactive instead of reactive when scheduling forest machines to harvest sites?

- How do laboratory results compare to seedlings and trees growing in the forest?

- What type of traffic can be allowed not to exceed growth impeding thresholds?
Thank you for your kind attention!

Eric R. Labelle
eric.labelle@tum.de
www.fvt.wzw.tum.de
Appendices
Shoot growth over time

[Graph showing the growth of seedlings over days since seeding, with lines representing different levels of growth and their corresponding equations and R-squared values.]

- **RBD**
 - **Levels**
 - Level 0.67: $y = 2.101 + 0.04162x - 0.000033x^2$, $R^2 = 99.0$, $N = 6$
 - Level 0.72: $y = 2.305 + 0.04349x - 0.000076x^2$, $R^2 = 97.8$, $N = 6$
 - Level 0.77: $y = 1.673 + 0.06292x - 0.000237x^2$, $R^2 = 98.2$, $N = 7$
 - Level 0.82: $y = 2.437 + 0.03248x - 0.000057x^2$, $R^2 = 98.7$, $N = 5$
Soil sampling and preparation

- 800 kg of soil
- Material was air-dried, oven-dried at 60°C, and then pulverized
- Sieved through 4.00 mm sieve

Particle size distribution:
- Gravel (> 2.00 mm) = 11.0%
- Sand (0.063 mm < x ≤ 2.00 mm) = 25.4%
- Silt (0.002 mm < x ≤ 0.063 mm) = 52.2%
- Clay (< 0.002 mm) = 11.4%

Atterberg limits:
- Liquid limit = 34.8%
- Plastic limit = 21.5%
- Plasticity index = 13.3%
Relative bulk density

\[y = -0.0016x^2 + 0.0606x + 1.0414 \]
\[R^2 = 0.9213 \]
Seeding

- Initial tests performed with European beech.
- 5 Norway spruce seeds planted in a 1 cm deep furrow on April 9, 2018.
- Furrows were back-filled.
Accuracy and repeatability
Compaction procedure

- Added 550 g of sand followed by 550 g of coarse gravel at the bottom of each chamber.
Future work…the missing link

- What does this imply for forest operations?

- **Phase 1**: Determine growth impeding relative bulk density thresholds for different tree species growing in soils with different textures.

- **Phase 2**: In-stand testing of machinery impacts. How are residual trees and seedlings responding in the forest?
Assistant Professorship of Forest Operations
TUM School of Life Sciences Weihenstephan
Technical University of Munich

FORMEC - 2019 Eric R. Labelle