**INTRODUCTION**

Nowadays tree growth measurement can be done by many ways, by using the simple tools till complex devices. Some devices have been developed to electronically read and collect data for maximum convenience. However, accuracy of such data is pretty much relies on reader’s skill and expertise. If the user is professional, result may be more accurate than result obtained by an inexperienced user. This indicates human error on forest mensuration that may occur. Consequently, this study aims to develop a prototype for unmanned tree growth measurement in order to avoid such human error. The concept of prototype is to integrate the dendrometer with Internet of Things technology. The data that obtained from prototype are near real-time information, hence forest owner would monitor the tree growth and use such information for decision making. This would help the forest owner to do the thinning or felling more precisely: right place and right timing.

**METHOD**

**Development of prototype tree growth monitoring device**

According to design, the prototype consists of 3 main parts:

1. A 60mm slider resistor sensor unit enclosed in a waterproof case.
2. Control unit which takes data from the sensor and transmit to the gateway. The control unit that control data recording interval (hourly, daily, weekly, monthly etc.)
3. Gateway receives data from the sensor through the control unit, then transmit the data to the server for display. This unit consists of battery, and Internet module.

Principle of the prototype tree growth monitoring device is following:

- When tree grows, a cord around the tree stretches and make movement in the sensor unit, then the sensor unit records the length it moves (considered as tree growth) before transmitting the data to the control unit, which turning it recorded data and send it to the gateway for display on the computer software or mobile application.

**Data analysis**

Study of tree growth by using the prototype device and other equipment to measure (January – June 2019) diameter growth at the height of 1.30 meter once a month for six months. The correlation between tree growths data obtained from prototype are near real-time information, hence forest owner would monitor the tree growth and use such information for decision making.

**RESULTS**

- The prototype can be used as other equipment but some prototype’s errors were observed. It showed that collected data from prototype were noticeably inconsistent compared to other devices.
- The inconsistency might occur because of poor signal interference or external disturbances to the sensor strip (by human or animal for example).
- The implementation of prototype is limited to only 6 months of (January – June 2019), which was dry season. Perhaps, tree did not grow that much. Data collection therefore should be continue to cover whole year round including rainy season.

**Figure**

Working principle of prototype tree growth monitoring device

**Figure**

Tree growth data obtained from various devices June 2019

**ACKNOWLEDGMENTS**

This research was supported, under the Strengthening and Developing New Researcher Plan, in conformance with the Research and Innovation of Graduate Study Strategy of the National Research Council of Thailand (NRCT) as of the Fiscal Year.

In addition, the researchers would like to thank those involved with other people who are helping support and encouragement throughout. Researchers hope this research will be useful to students, not least in education. And the general The reduction was also instrumental in the creation of knowledge and the development of forestry of the country.