Accident analysis in forest operations in an alpine context

Andrea Laschi*, Enrico Marchi*, Cristiano Foderi*, Francesco Neri*

* University of Florence - Department of Agricultural, Food and Forestry Systems
Introduction

Sustainable management of forest resources includes Health and Safety of forest workers

Forest Operation is a very dangerous activity

Worksite environment

• Terrain conditions
• Weather conditions
• Biological agents

Exposure to

• Heavy loads
• Physical agents (noise, vibration)
• Wood dust
• Exhaust fumes

Use of machines and tools

• Chainsaw
• Tractor
• ...

Risks
Introduction

High mechanization reduces risks of accidents

Not always available or applicable

Traditional mechanization very common on steep terrains

Safety for forest workers → needs of deep accident analysis

Accident analysis in forestry

Fragmented information

Mixed with Agriculture

Specific for single operation/machine

Difficults in Private Sector

Lack of information in Italy
Aim

Accident Analysis including all forest operations in a representative Italian forest area

Identify

Causes
频率和严重性

Consequences

Dynamics

Critical factors

Most dangerous operations

Interaction between variables
Data Collection

Data referred to all the public forest workers

Period examined: 1995-2013

All the injuries notifications were collected (385)
Materials and Methods

- **Accident book**
- **Mandatory in Italy**
- **Cause of accident (action)**

Date

Worker’s age

Severity

Kind of injury

Material agent causing injury

Part of the body injured

Italian standard UNI 7249

- $H = \text{total n of worked hours}$
- $n_i = \text{number of injuries}$
- $D = \text{total days of prognosis}$

Severity Index

$$SI = (D/H) \times 10^3$$

Frequency Index

$$FI = (n_i/H) \times 10^6$$

«Chi-squared» test applied for data of frequencies
385 total injuries

FI and SI decreasing trends → no significance
Results: weekday

\[X^2 = 12.62, \ df = 4, \ p < 0.0013 \]

Results: operation

\[X^2 = 163.82, \ df = 6, \ p < 0.000 \]
Results: body parts injured

- Hand, wrist: 22%
- Head, face: 9%
- Back: 6%
- Leg, knee: 23%
- Torax: 5%
- Shoulder, trunk: 5%
- Arm, elbow: 7%
- Foot, ankle: 10%
- Eye: 8%
- Other: 5%
<table>
<thead>
<tr>
<th>Agent cause of the accident</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainsaw</td>
<td></td>
</tr>
<tr>
<td>Machines and vehicles</td>
<td></td>
</tr>
<tr>
<td>Other equipment</td>
<td></td>
</tr>
<tr>
<td>Biological agents</td>
<td></td>
</tr>
<tr>
<td>Splinter, wood fragment</td>
<td></td>
</tr>
<tr>
<td>Branches, top</td>
<td></td>
</tr>
<tr>
<td>Log, stump, tree</td>
<td></td>
</tr>
<tr>
<td>Boulder, stone</td>
<td></td>
</tr>
<tr>
<td>Forest ground</td>
<td></td>
</tr>
</tbody>
</table>
The role of personal behaviours in workers’ safety

1 Accident → 89 workers

2 Accidents → 28 workers

3 Accidents → 8 workers

5 Accidents → 1 worker

7 Accidents → 1 worker

Survey possible on 175 injuries happened to 121 workers
Workers’ age

- Age of workers
- n injuries (average value)
- Average workdays lost per injury

- ≤20
- 21-30
- 31-40
- 41-50
- 51-60
- >60

n injuries

Average workdays lost per injury
Conclusion

• The high danger of forest operations has been confirmed;

• High rate of injuries, even if the workers were well trained and equipped;

• Personal behaviours of workers should be considered in prevention activities in order to prevent recidivism phenomenon;

• Further studies are recommended regarding the role of weekday in accident probability and the relationship between accident severity and worker’s age.
Thank you for your attention

Andrea Laschi, Enrico Marchi, Cristiano Foderi, Francesco Neri

For further information please contact Andrea Laschi

andrea.laschi@unifi.it