Self-charging wireless module for remote monitoring of forest machines
Grigolato S., Marinello F., Pezzuolo A., Forigo S., Sartori L., Cavalli R.
Background

Agriculture and forest machine monitoring system

Agriculture and forest machine construction companies develop property system and devices to monitor and to control parameters and performance.

At different level low cost solutions are available just to monitor position, working time, working condition (safety) of machinery or vehicle fleet.

GPS module + accelerometer + GPRS module or OBD2/J1939 datalogger
How could be an innovative monitoring device for agricultural and forest machine?

- Easy and fast plug and play
- Not wire connection
- Expandable to different forest machines, vehicles or machinery extended
- Self-charging energy supply
- Communication with smartphone apps
- Share data in cloud
The prototype

- photovoltaic cells
- vibration energy harvesting
- small dimension
- resistant case

Android and iOS App able to store data

- GPS module
- 3-axis accelerometer
- 3-axis gyroscope
- Temperature sensors
- Wireless/bluetooth connection

7 cm
Aims

Verify the potentiality of the prototype to monitor different forest machineries

The test was based at two investigation levels:
• Controlled tests for liquid temperature measurement, working time recognition and GPS position accuracy
• Real working condition test for working time recognition and GPS position accuracy
Laboratory test

Temperature sensor

Comparison with a laboratory thermometer
- Duration: 40 minutes
- Interval measurements: 1 minute
- Fluid: water

Control method: laboratory thermometer with a temperature probe (0.01 °C precision)

Test
1) Constant increment (+0.64 °C min⁻¹)
2) Different increment rate (1.25 and 0.25 °C min⁻¹)
3) Variable increment (form 6 to 0.2 °C min⁻¹)
Laboratory test

Working time recognition

- Machine vibration simulation driven by an electric engine
- Vibration generated at 260 r.p.m.

GPS accuracy

GPS is active only when the prototype starts to record the machine

Test

5 positions (2 between high buildings and 3 open area)
Control points measured by a RTK-GPS
GPS sensor activated by the PTO of an agriculture tractor at 540 r.p.m

\[\sigma_{H,acc} = \sqrt{(\bar{E} - E_{\text{true}})^2 + (\bar{N} - N_{\text{true}})^2} \]
Field test applied to forest machines

Chipping working time monitoring

Sledge winch working time monitoring
Results

Controlled test: temperature

Constant increment

Graphs showing the temperature over time for the prototype and control, with a linear trend line and equation for the prototype temperature.
Results

Controlled test: temperature

Different increment rate (1.25 and 0.25 °C min⁻¹)
Results

Controlled test: temperature

Variable increment (form 6 to 0.2 °C min⁻¹)

![Graph showing temperature over time for prototype and control.](image1)

![Graph showing temperature difference between TPSENS and Control.](image2)
Results

Controlled test: working time

Cycles: 5, 10, 15, 20, 30, 60, 90, 180, 240, 360 minutes
Results

Controlled test: GPS position

<table>
<thead>
<tr>
<th>Reference point</th>
<th>Horizontal accuracy</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29.3</td>
<td>Between buildings 18 m high (4 side)</td>
</tr>
<tr>
<td>2</td>
<td>24.7</td>
<td>Between buildings 18 m high (2 side)</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
<td>No obstacle in the sky view</td>
</tr>
<tr>
<td>4</td>
<td>16.9</td>
<td>No obstacle in the sky view</td>
</tr>
<tr>
<td>5</td>
<td>18.1</td>
<td>No obstacle in the sky view</td>
</tr>
</tbody>
</table>
Results

Real condition: chipping working time

Study site Paganella (September 2015)
Jenz HEM 561 (320 kW) mounted on truck
Tops and small diameter

| Test | Chipper engine on | Chipping time | SENSOR | Difference Abs|\((A-C)/A\)| |
|------|-------------------|---------------|--------|---------------|-----------------|
| 1 | 00.35.08 | 00.32.09 | 00.36.01 | 2.45% |
| 2 | 00.38.57 | 00.22.30 | 00.39.18 | 0.89% |
| 3 | 00.37.51 | 00.26.32 | 00.37.56 | 0.22% |
| 4 | 00.32.06 | 00.23.37 | 00.32.02 | 0.21% |

Mean: 0.84
SD: 1.17

GPS horizontal accuracy: 27.3 m
Field test

Real condition: sledge winch working time

Place: Calalzo di Cadore (September 2015)
Model: Greifenberg VF 2100 Freeman (127 kW)
Line length: 1200 m

<table>
<thead>
<tr>
<th>Test</th>
<th>A Winch engine on</th>
<th>B Winch operating time</th>
<th>C SENSOR</th>
<th>Difference Abs</th>
<th>(A-C)/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00.41.51</td>
<td>00.26.05</td>
<td>00.40.08</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>00.44.50</td>
<td>00.30.48</td>
<td>00.43.12</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>00.43.58</td>
<td>00.28.02</td>
<td>00.41.14</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>00.35.02</td>
<td>00.24.28</td>
<td>00.34.27</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>00.43.48</td>
<td>00.30.28</td>
<td>00.42.19</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>00.46.56</td>
<td>00.28.38</td>
<td>00.45.08</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td>0.340</td>
<td></td>
</tr>
</tbody>
</table>

GPS horizontal accuracy: not GPS position were collected
Conclusions

Laboratory test has confirmed:
• possibility to measure working time and record temperature of liquid (need calibration)
• position tests highlighted the need to improve the GPS module (external antenna)

Filed tests
• Good results in working time machinery (chipper and sledge winch in this case) detection
• GPS module need to be absolutely redesigned

...further developments

• More tests involving forest machines and machinery extended
• Improve current smartphone/tablet apps (at the moment available for agriculture machinery)
• More than one sensors working in network
THANK YOU FOR YOUR ATTENTION