Semi-automated traffic counting method for forest roads

Balázs Kisfaludi, Péter Primusz, József Péterfalvi
University of West Hungary
Contact: Balázs Kisfaludi | kisfaludi.balazs@emk.nyme.hu
Background

- Mixed use of forest roads
- No data on public use
- Pilot project to take digital photos of road users
- 70,000 digital still images since 2012
- Need of automation
The counter system
The counter system

- Digital security camera
- Reflexive photo electric sensors
- Photo and date stored
- 150 photos daily
The counter system
Image analysis

- 11,000 photos analysed by interpreters
- Database for testing automation

- 1st step: Locate users
- 2nd step: User classification
- Aforge.NET and Accord.NET frameworks
Road user location

- Background - Foreground separation
- Diversity map
- Diverse areas are interesting
- Patches of interesting areas
- Road users included
Road user location
Road user classification

- Machine learning
- Bag of Visual Words model for image description
- Support Vector Machine for classification
- 3 main categories: pedestrians, cyclists, cars
Results
Results
Results

![Bar chart showing the distribution of different transportation modes.](chart.png)

- **Pedestrian:** 93.6%
- **Cyclist:** 73.1%
- **Car:** 77.8%

Legend:
- Yellow: Pedestrian
- Red: Cyclist
- Green: Car
Conclusion

- Human supervised image analysis needed for research purposes
- Semi-automated process can distinguish between cars and humans
- Automation can be improved by:
 - Better image quality
 - Background image or video
 - Better software
This research was supported by the “Agroclimate.2” (VKSZ_12-1-2013-0034) EU-national joint founded research project.