Accurate estimation of wood chip volume to increase efficiency in allocating chipper and transport capacities

48th International Symposium on Forestry Mechanization

Fabian Schumeyer, Karl Hüttl, Herbert Borchert

Linz, October 6, 2015
Optimisation of wood chip production chains

- Joint research project
 - Technology and Support Centre
 - Bavarian State Institute of Forestry

- Funding
 - Bavarian State Ministry of Food, Agriculture and Forestry

- Cooperation
 - Bavarian State Forest Enterprise
Content

- The challenge
- Different approaches
- Our research
 - Measurements in the field
 - Maths in the office
- Recommendations for practitioners
The challenge

- Chipping operations at forest roadside as a standard procedure in Bavarian forestry
- Expected wood chip volume is an important parameter when planning wood chipping operations and logistics

- Factor for the conversion of solid timber into wood chips:
 - 1 m³ solid wood → 2.5 bulk cubic metres of wood chips
In forest wood chipping operations, we do not chip solid timber but...
Estimations may be based on three types of data:

- Total amount of wood harvested during the operation
- Number and dimension of tree parts for chipping
- Dimensions of wood piles for chipping

Two-step approach:
- Measurement of wood pile volume
- Calculation of chip volume using conversion factors

Different factors in use
Measurements on energy wood piles:
- Base length
- Upper length
- Maximum height
- Mean height
- Depth on both sides
Our research – Measurements in the field

- Measurements on energy wood piles:
 - Percentage of cut surfaces on front side
 - Diameter of tree parts
Measurement of produced wood chip volume
Our research – Maths in the office

V_{Cub} Cuboid
V_{Pri} Prism
V_{Cyl} Cylinder

V_{CubM} Cuboid (mean height)
V_{FrPy} Frustum of pyramid
V_{HFrCo} Halved frustum of cone
Our research – Maths in the office

- Frustum of pyramid
 - Most input parameters
 - Back side dimensions
 - Visually best fitting for majority of piles
Volume calculations

[Graph showing volume calculations for forest residues and energy roundwood. The graph includes data for different volume calculations methods, such as V_{Fr}, V_{FrPy}, V_{HFCo}, V_{Cyl}, and V_{Pri}. The graph displays means, ± SD, and min./max. ranges for each method.]
Conversion factors

<table>
<thead>
<tr>
<th>Forest Residues</th>
<th>Energy Roundwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.32 ± 0.15</td>
</tr>
<tr>
<td>± SD</td>
<td></td>
</tr>
<tr>
<td>Min./Max.</td>
<td></td>
</tr>
</tbody>
</table>

n = 20

n = 36
Cut surfaces on front side

Conversion Factor $y = 0.0273 \times x - 0.1163$

$R^2 = 0.7914$
Recommendations for practitioners

- Estimation of pile volume
 - As accurate as possible with the least number of measured parameters
 - No measurements on back side

- Forest residues:
 Volume of cylinder
 \[V_{\text{ForRes}} \approx \frac{\pi}{4} \times l_{bf} \times h_{\text{maxf}} \times d_{\text{mean}} \pm 10 \% \]

- Energy roundwood:
 Volume of cuboid with mean height
 \[V_{\text{EneRou}} \approx l_{bf} \times h_{\text{meanf}} \times d_{\text{mean}} \pm 10 \% \]
Recommendations for practitioners

- Conversion factors:
 - Forest residues:
 Percentage of cut surface area: 20.2%

<table>
<thead>
<tr>
<th>Cut surface area [%]</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion factor</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Conversion factors:

Energy roundwood:
Percentage of cut surface area: 61.5 %

<table>
<thead>
<tr>
<th>Cut surface area [%]</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion factor</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Thank you for your attention!

Bavarian State Institute of Forestry
Department 4 – Forest Technology, Business Management, Timber

Fabian Schulmeyer
+49 (0) 8161 / 71 – 5119
fabian.schulmeyer@lwf.bayern.de

www.holzenergieonline.de
www.lwf.bayern.de