Profitability of drying wood chips integrated into fuelwood supply

FORMEC 2015, Linz, Austria
Jyrki Raitila, VTT
Background

- Study in Central Finland (2012)
 - Ca. 30 heating plants run by heat entrepreneurs
 - Total output of these plants 20 MW

About 1 Mm3 of wood chips could be dried with unused heating capacity
Supply costs of forest chips
Supply costs 1/3

Case 1: Heating plant, annual heat production 5,000 MWh

- Supply chain 1 (**contractor model**): Raw material bought at landing, chipping and transportation separately paid for (chipping with large mobile chipper, transport with 120 m³ truck)
 - Price for whole trees at landing: €13 /MWh
 - Chipping costs: €3.6 /loose-m³
 - Transport costs: €3.6 /km
 - Efficiency of boiler: 78-88% when moisture of wood chips 55-20%
 - Malfunction costs: €120 /each
 - Use of heating oil: €14,000-0 /a (wood chips 55-20%)

- Supply chain 2 (**single supplier model**): Wood chips supplied by one supplier
 - Price of wood chips delivered at plant: €20 /MWh
 - Efficiency of boiler: 78-88% when moisture of wood chips 55-20%
 - Malfunction costs: €120 /each
 - Use of heating oil: €14,000-0 /a (wood chips 55-20%)
Supply costs 2/3

Case 2: Heating plant, annual heat production 1,500 MWh

- Supply chain 1 (**contractor model**): Raw material bought at landing, chipping and transportation separately paid for (chipping with tractor powered chipper, transport with tractor – load space 20 m³)
 - Price for whole trees at landing; €25 /solid-m³
 - Chipping costs; €4.5 /loose-m³
 - Transport costs; €2 / loose-m³
 - Efficiency of boiler; 78-88 % when moisture of wood chips 55-20%
 - Malfunction costs; €120 /each
 - Use of heating oil; €5,200- 0 /a (wood chips 55-20%)

- Supply chain 2 (**single supplier model**): Wood chips supplied by one supplier
 - Price of wood chips delivered at plant, €20 /MWh
 - Efficiency of boiler; 78-88 % when moisture of wood chips 55-20%
 - Malfunction costs; €120 /each
 - Use of heating oil; €5,200- 0 /a (wood chips 55-20%)
Supply costs 3/3, €/produced MWh

Case 1
- Transport and chipping costs of wet wood make contractor model more expensive

Case 2
- Raw material and chipping significantly more expensive when wood is wet
Cost difference of dry and wet chips

Case 1
- Cost difference between *supply models* max 2.7 €/MWh, if moisture is 55%

<table>
<thead>
<tr>
<th></th>
<th>Contractor model</th>
<th>Single supplier model</th>
</tr>
</thead>
<tbody>
<tr>
<td>55% → 20%</td>
<td>€8.9/MWh</td>
<td>€6.8/MWh</td>
</tr>
<tr>
<td>45% → 20%</td>
<td>€5.3/MWh</td>
<td>€4.3/MWh</td>
</tr>
</tbody>
</table>

Case 2
- Cost difference between *supply models* max 4.3 €/MWh, if moisture is 55%

<table>
<thead>
<tr>
<th></th>
<th>Contractor model</th>
<th>Single supplier model</th>
</tr>
</thead>
<tbody>
<tr>
<td>55% → 20%</td>
<td>€14.6/MWh</td>
<td>€8.7/MWh</td>
</tr>
<tr>
<td>45% → 20%</td>
<td>€10.2/MWh</td>
<td>€6.2/MWh</td>
</tr>
</tbody>
</table>

Conclusion 1: In contractor model wood chips should not be wet
Conclusion 2: You can afford paying more for dry wood chips, €/MWh – pricing based on quality!
Conclusion 3: On the other hand, you can afford paying for drying
Drying of wood chips
Drying in a show case dryer

- Built in freight container, drying heat from a wood chip boiler, 40-60 kW output needed (Case 2: 1,500 MWh/ν)

- Calculation parameters:
 - Max drying volume; 2,500 loose-m³/a, 25 m³ each drying batch
 - Needed heat energy – calculated with a model - 445 MWh (55% moisture) ja 268 MWh (45% moisture)
 - Price of heat; €40/MWh (prime cost for entrepreneur) ja €24 /MWh (fuel costs only)
 - Dryer investment; 35,000 €
 - Electricity and maintenance; €1,300 /a
 - Repayment; 10 a
 - Interest; 5%
Moisture of wood chips and boiler efficiency

- In small boilers (<1MW) moisture of wood chips affects the performance of the boiler significantly, particularly when MC is bigger than 35%.
Drying wood chips for sale

- Entrepreneur dries wood chips at a plant he operates
- Enough heat available
- Drying costs based on example:

<table>
<thead>
<tr>
<th></th>
<th>Heat price 24 €/MWh</th>
<th>Heat price 40 €/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>55% → 20%</td>
<td>6.5 €/loose-m³</td>
<td>9.3 €/loose-m³</td>
</tr>
<tr>
<td>45% → 20%</td>
<td>4.8 €/loose-m³</td>
<td>6.6 €/loose-m³</td>
</tr>
</tbody>
</table>

- To be profitable, dry wood chips should be this much more expensive if sold
Drying wood chips to be used at own plant

- Dry (20%) wood chips needed 2,100 loose-m3
- Profitability of drying was evaluated by net present value (NPV) method
 - NPVs of benefits and costs were compared
 - Annual costs were drying and capital costs
- Benefits (cost savings):
 - Less wood chips are needed, less raw material costs
 - Transportation costs decrease because of smaller volume
 - Chipping cost decrease because of smaller volume
 - Boiler efficiency increases
 - Fewer malfunctions of boiler and feeding system occur
 - Less heating oil (additional fuel) is needed
Profitability of drying in different alternatives

<table>
<thead>
<tr>
<th></th>
<th>Drying heat 40 €/MWh</th>
<th>Drying heat 24 €/MWh</th>
<th>Drying heat 40 €/MWh + storage</th>
<th>Drying heat 24 €/MWh + storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial moisture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55%</td>
<td>14,792</td>
<td>-36,170</td>
<td>60,196</td>
<td>-775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,234</td>
<td>-51,738</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46,683</td>
<td>-6,334</td>
</tr>
<tr>
<td>45%</td>
<td>-8,159</td>
<td>-37,222</td>
<td>19,407</td>
<td>-23,727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-9,655</td>
<td>-52,789</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,894</td>
<td>-25,223</td>
</tr>
</tbody>
</table>

- Additional storage investment needed if there is no other storage available
- Drying more difficult to make profitable in single supplier model
- Cost of drying heat is crucial for profitability
Effect of increased heat sales

- Possible to dry 400 loose-m3 'extra', then heat sales could be increased by 300 MWh (due to increased heating value + efficiency of boiler)
 - If heat is sold for €60 /MWh, 18 000 € annual gross income is earned
- In the least profitable option about half of the increased potential (=200 loose-m3) would ensure profitability
- In contractor model drying 50 loose-m3 more would be sufficient
Conclusions

- Heating plants operated by entrepreneurs usually have plenty of unused heating capacity that could be used for drying wood chips or firewood.
- Moisture of wood chips should not fluctuate if most operation costs in the supply chain are based on volumes.
- Basis for 'quality pricing = higher price/MWh for dryer wood chips, win-win possible.