Long Log Harvesting
by Harvesters and Combination Forwarders

Udo Hans Sauter
1 Objectives

2 Materials and Methods
 2.1 Operating conditions
 2.2 Harvesters and Forwarders used
 2.3 Variants of logging methods
 2.4 Data collection and analysis
 2.5 Roundwood measurement

3 Results
 3.1 Labour productivity
 3.2 Costs
 3.3 Impact on residual stand

4 Conclusions
1 Objectives

- Forestry administrations confronted with demand for long logs by sawmills in southern Germany
- FVA was requested to investigate influences on productivity, costs and stand damages caused by mechanized harvesting methods providing long logs
2 Materials and Methods
2.1 Operating conditions: Study site

- **Altitude:** 1209 m - 1235 m (southern Black Forest)
- **Stand:**
 - Spruce: 27.2 ha
 - DBH: $\bar{x} = 33$ cm
 - Age: 67-100, $\bar{x} = 87$
- **Precipitation (mm):**

<table>
<thead>
<tr>
<th>period/year</th>
<th>July</th>
<th>August</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x} 1981-2010</td>
<td>110</td>
<td>106</td>
<td>DWD, 2014</td>
</tr>
<tr>
<td>2014</td>
<td>123</td>
<td>133</td>
<td>Climate-data.org, 2014</td>
</tr>
</tbody>
</table>

- **Slope inclination:** 10 – 20 % / partially 30 %
- **Skid trail distances:** ~ 40 m
- **Cutting intensity:** 81 m³/ha
2.1. Operating conditions: soil types

- In all critical areas for the harvesting trial, the soil types provided stable conditions for machine operations.
- Only the CTL trial area was partly influenced by weak soil conditions.
2.2 Harvesters and forwarders used

Tracked harvester:
- Name: Königstiger Kern 30 TSS
- Engine power: 251 hp
- Weight: 34 t
- Crane reach: 15 m
- Net lifting capacity: 800 kg (15 m)
- Harvester head: Kesla 30 RH
- Weight harvester head: 1.2 t
- Felling diameter: 670 mm

Wheel Harvester:
- Name: John Deere 1470 E IT4
- Engine power: 255 hp
- Weight: 24.2 t
- Crane reach: 9.7 m
- Net lifting capacity: 120 kg (9.7 m)
- Harvester head: John Deere H 480 C
- Weight harvester head: 1.2 t
- Felling diameter: 680 mm

Combination Forwarder (as clambunk skidder):
- Name: HSM 208 F Kombi short chassis (8-Wheel)
- Engine power: 260 hp
- Weight: 20.5 t
- Payload: 12 t

Forwarder:
- Name: Komatsu Valmet 860.4
- Engine power: 197 hp
- Weight: 17.7 t
- Payload: 14 t
2.3 Variants of logging methods

Wheel Harvester
2.5 ha, short log logging on skid trail 1 - 8

Tracked harvester
2.5 ha, short log logging on skid trail 9 - 15

Tracked harvester
5.5 ha, long log logging on skid trail 16 - 23

Wheel Harvester
5.5 ha, long log logging on skid trail 24 - 29
2.4 Data collection and analysis

- Time studies based on continuous timing method for
 - motormanual felling (only felling)
 - fully mechanised harvesting (pre-skidding included)
 - skidding
- Calculation of the productive working hours (PWH_{15})
- Calculation of the productive machine hours (PMH_{15})
- Calculation of the labour productivity, the costs and the impact on the residual stand of the 4 variants
3.3 Roundwood measurement

• Measurements: Length and mean diameter

Fig.1: Long logs in loose stacks on the tracked harvester area before skidding.

Fig.2: Long logs in loose stacks on the wheel harvester area before skidding.
3 Results
3.1 Labour Productivity

<table>
<thead>
<tr>
<th>m³ / PMH₁₅</th>
<th>m³ / PWH₁₅</th>
<th>Fully Mechanised Harvesting (pre-skidding included)</th>
<th>Skidding</th>
<th>Motor/Manual Felling (only felling)</th>
<th>Total System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wheel Harvester</td>
<td>Tracked Harvester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>short logs</td>
<td>long logs</td>
<td>short logs</td>
<td>long logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.3</td>
<td>31.4</td>
<td>21.1</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.3</td>
<td>20.4</td>
<td>15.9</td>
<td>20.4</td>
</tr>
</tbody>
</table>

m³ without bark
3.2 Costs

<table>
<thead>
<tr>
<th></th>
<th>Wheel Harvester</th>
<th>Tracked Harvester</th>
</tr>
</thead>
<tbody>
<tr>
<td>€ / m³</td>
<td>short logs</td>
<td>long logs</td>
</tr>
<tr>
<td>fully mechanised harvesting</td>
<td>6.46</td>
<td>5.60</td>
</tr>
<tr>
<td>(pre-skidding included)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>skidding</td>
<td>4.96</td>
<td>4.75</td>
</tr>
<tr>
<td>motormanual felling</td>
<td>1.92</td>
<td>1.92</td>
</tr>
<tr>
<td>(only felling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total system</td>
<td>13.34</td>
<td>12.27</td>
</tr>
</tbody>
</table>
3.3 Impact on the residual stand

<table>
<thead>
<tr>
<th>Impact on the residual stand (%)</th>
<th>Wheel Harvester</th>
<th>Tracked Harvester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short logs</td>
<td>long logs</td>
</tr>
<tr>
<td>ZHB – Procedure</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Deuschel/F.Sauter – Method (Meng)</td>
<td>19</td>
<td>23</td>
</tr>
</tbody>
</table>

Removal (%) |
23 | 30 | 22 | 28
4 Conclusions
4 Conclusions

- **Differences** between the variants in terms of **labour productivity** and **costs** are mainly caused by:
 - **working methods** of the machine operators (especially of the harvester operators)
 - **distribution of the wood quality**
 - **operating conditions**

→ The choice of logging method had only minor influence

- **Differences** between the variants in terms of the impact on the residual stand are mainly caused by:
 - **Sub-process swinging in the long logs** into the skid trails

→ The influence of the logging method was strong, but both methods caused still high damage rates
Thank you for your attention!
Author contact

Udo Hans Sauter
Department of Forest Utilisation
Forest Research Institute of Baden-Württemberg
Wonnhaldestraße 4
79100 Freiburg
Germany
Phone: +49 761 4018237
Email: udo.sauter@forst.bwl.de

Felix Rinderle
Chair of Forest Operations
University of Freiburg
Werthmannstraße 6
79098 Freiburg
Germany
Phone: +49 761 2033670
Mobile: +49 176 61388207
Email: felix.rinderle@foresteng.uni-freiburg.de