Forest Road Network and Pavement Engineering Revisited

FORMEC ’15
Linz (AUT)

Hans Rudolf Heinimann
Future Resilient Systems Program Director
ETH Singapore
Network and Pavement Design Origins

Road Network Engineering

1950
1955
1960
1965

1949 UN Conference
Road and Motor Transport
- 2.5m width
- 8 / 14.5 to axle load
- 18 m length (truck-trailer)

Pavement Engineering

AASHO Design Guide
Pavement design

Matthews
Soom
Larsson
Segebaden

Dykstra 1976
Weintraub 1976
Mandt 1974
Road Networks – Built upon 1960 Philosophy?
B-Double Configuration (70to)
90t Configuration SWE (ab 2009)
Key Questions

- Take part of network out of service?
- Extend the existing network?
- Upgrade existing roads?
- Adapt pavement structure to traffic and vehicle requirements?
Road Network Geometry – Matthew’s World

\[RD_r = \frac{l}{l \cdot s_r} = \frac{1}{s_r} \]

\[AYD_{\text{theor}} = \frac{s_r}{4} = \frac{1}{4 \cdot RD_r} \]
Non-parallel Road Networks – Segebaden’s World

Road Network Efficiency Metrics
- c_{net} Segebaden
- e_{net} Backmund

Efficiency Metrics

\[AYD_{\text{theor}} = \frac{1}{4 \cdot RD_r} = \frac{4 \cdot s_r^2}{4 \cdot 4 \cdot s_r} = \frac{s_r}{4} \]

\[AYD_{\text{eff}} = \frac{s_r}{3} \]

\[c_{\text{net}} = \frac{AYD_{\text{eff}}}{AYD_{\text{theor}}} = \frac{s_r \cdot 4}{3 \cdot s_r} = 1 \frac{1}{3} \]

\[e_{\text{net}} = \frac{AYD_{\text{theor}}}{AYD_{\text{eff}}} = \frac{3}{4} \]
Non-Parallel Road Networks – Poisson World

Network Efficiency

- $c_{net} = 2$
- $e_{net} = 0.5$
YD - From Mean Values to Distributions

- **Parallel Network**
- **Grid Network**
- **Poisson Field**

The tail defines effectivity.
YD – Distribution Functions

Cum Density \([F(s_r)]\)

Yarding Distance

- Parallel Network
- Grid Network
- Poisson Field
Road Networks Assessment?
Real-World Example

Cum Density $[F(s)]$

Yarding Distance

Parallel Model

Grid Model

Real-World Net

e_{net}
4th-Power Law

Equivalent Standard Axle Load (ESAL)

Axle Load (kN)

Single-Axle

Tamdem-Axle

Tridem-Axle

Standard

Tridem-Gain

1 SAL 80 kN

80 kN

VSS 2011

VSS 2011

Hans R. Heinimann | 15.12.2015 | 14
40to Truck-Trailer System

1.33 SAL 1.87 SAL 0.20 SAL 0.17 SAL

85 kN 171 kN 53 kN 85 kN
Damage to Pavement Effects of Different Vehicle Configurations

- B-Double road train 70 to: -73%
- Truck + trailer 60 to (SWE): -67%
- Truck + trailer 40+6 to: -50%
- Truck + trailer 40 to
- 3-axle trailer
- 2-axle trailer
- 3-axle truck
- 2-axle truck
AASHTO Pavement Design Approach

- S_0: Uncertainties
- A_T: Traffic
- R_P: Pavement Bearing Resistance
- R_B: Soil Bearing Resistance
- $S_0 Z_R$: Error (ESAL + Perf)
- ESAL: Equivalent Standard Axle Load
- SN: Structural Number
- M_r: Resilient Modulus
- CBR: California Bearing Ratio
LVR Pavement Design [AASHO Guide 1973, simplified]

\[SN = 12.04 \cdot e^{-0.24 \cdot s_0 \cdot z_R} \cdot ESAL^{0.11} - 2.54 \]

Where:
- **ESAL** = Characteristic value of traffic actions
- **Mr** = Resilient Modulus (kPa)
- **s₀** = standard normal derivative
- **z_R** = Error (ESAL + Performance)
Pavement – Structural Elements

- Bankett Shoulder
- Damm Embankment
- Lockergestein / Fels anstehend In-situ Soil / Bedrock
- Deckschicht Surface Course
- Tragschicht Base Course
- Übergangsschicht Transition Base
- Verbesserter Untergrund Capping Layer

Oberbau Pavement Structure
Unterbau Roadbed
Pavement Design

8 cm
- **SC** Unbound Aggregate UG 0/22
- **BC** Unbound Aggregate UG 0/63
- **TB** Geotextile, if CBR < 3%

\[\text{SN} = 3.3\]

30 cm
- **SC-BC AB 16 TDS L**
- **TS** Unbound Aggregate UG 0/63
- **TB** Lime Stabilization

\[\text{SN} = 6.8\]
Conclusions

- **Characterization of Road Networks**
 - **From means to distributions**
 - **The tail of YD distributions** defines network effectivity and efficiency
 - Assessment GIS-based, yielding the CDF

- **4th-power law**
 - Vehicle configurations with **tandem and tridem axles**!
 - **ESAL metric**

- **Pavement design**
 - **AASHTO 1993 Guide**
 - **Standardization of aggregate materials**