A step towards optimal wood supply chain: A case study on optimal tree bucking in Central Finland

Jori Uusitalo METLA
Heikki Korpunen METLA
Veli-Pekka Kivinen University of Helsinki
Tree bucking control

Two main questions to be solved:
- What kind of wood assortments (products) from which stand
- What kind of log (length, diameter, quality) within each wood assortment
Tree bucking control

Three main levels:
- Stem level - optimize cutting of one stem
- Stand level – optimize cutting of all stems in a stand
- Forest level – optimize bucking of all trees of several stands
Aim of the study

- How large net profit can be achieved provided that a forest-level tree bucking can be achieved?
 - A Case study: search for the maximum net profit and minimum net profit (assuming all restrictions are fulfilled)
 - Potential gain: $(\text{Maximum} - \text{Minimum})/2$
Case study: Mills/assortments

Supply
- 15 study stands >= 5080 m³

Demand
- All mills = 4830 m³

SAWMILL1
- Sawlogs 3420 m³

SAWMILL2
- Sawlogs 450 m³
- Small sawlogs 150 m³

LOGGING FACTORY
- Special dimensions
 - Sawlogs 170 m³

PULPMILL
- Pulpwood 470 m³

JOINERY FACTORY
- Good quality
 - Butt logs 170 m³

Own Mills
- Delivery mills
Calculation of costs and revenues

Own mills

- **Costs**
 - Stumpage price
 - Cutting costs
 - Forwarding costs
 - Timber trucking costs
 - Capital costs of wood
 - Wood supply chain management cost
 - Processing costs

- **Revenues**
 - final products (lumber, pulp, etc)

Delivery mills

- **Costs**
 - Stumpage price
 - Cutting costs
 - Forwarding costs
 - Timber trucking costs
 - Capital costs of wood
 - Wood supply chain management cost

- **Revenues**
 - log products (sawlogs, pulpwood, etc)
GA-optimization

Stem data stand 1 → Stem data stand 2 → ... → Stem data stand n

General price matrices - log product k

Demand matrix string 1 → Demand matrix string 2 → ... → Demand matrix string m

BUCKING PROCEDURE

Apply mutation → Apply crossover → Apply selection

Calculate the fitness (returns – costs) of each demand matrix string

Has the maximum iteration number been reached? Yes → End

No →

Model for forwarding cost

Log product 1

Model for trucking cost

Revenues & stumpage prices - Log product 1

Production cost at mill - Log product 1

Volume constraints - Log product 1

Transport distances - Stand 1 – Mill 1

Log product 2

Log product k
Activity based costing

- A cost management system developed for harvesting and timber trucking

 - The more time certain product requires resources the more cost must be allocated to it

Time consumption analysis of the mechanized CTL harvesting system

- Time study carried out in the Middle-Finland in 2004
- 9 final cutting stands, 5 thinning stands
- 8 harvesters, 10 operators
- 8 forwarders, 9 drivers

Productivity of long-distance wood transportation

Time study carried out in the Middle-Finland in August 2005

- 368 loads, 17 900 m³, 9 mills
- 62% from one storage, 38% collecting from several (2 – 8 storages)
- 13 drivers, 8 vehicles

Costing Method for sawmilling

A virtual "greenfield" sawmill

The model calculates the realistic cost for each log size

Outputs:
• A model running on excel –sheet

Costing Method for kraft pulp mill

A virtual "greenfield" pulp mill

The model calculates the realistic cost for each log size

Outputs:
• A model running on excel –sheet

Revenues of sawmilling

- Revenues for each log
 - Quality differences between stands
 - Pre-harvest measurement (Uusitalo 1997)
 - Yields and proportions of quality grades by diameter and log type
 - Amount of by-products (chips, bark, sawdust)
 - Price level 2010
Revenues of pulp milling

– Revenues for each log
 – Amount of bark
 – Pulp yield
 • pulp yield increases with increasing basic density

– Yield and markets prices of by-products (Bark, Oil, Turpentine, Black liquor)
Results
Results: Allocation of wood assortments

<table>
<thead>
<tr>
<th>Log products</th>
<th>Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>LOGGING</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>AB</td>
<td>AB</td>
<td>AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOINERY</td>
<td>B</td>
<td>AB</td>
<td>AB</td>
<td>B</td>
<td>AB</td>
<td>A</td>
<td>AB</td>
<td>A</td>
<td>B</td>
<td>AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAW1</td>
<td>AB</td>
<td>AB</td>
<td>A</td>
<td>B</td>
<td>AB</td>
<td>B</td>
<td>AB</td>
<td>AB</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>SAW2</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AB</td>
<td>AB</td>
<td>AB</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>SMALL</td>
<td>AB</td>
<td>B</td>
<td>AB</td>
<td>B</td>
<td>B</td>
<td>AB</td>
<td>AB</td>
<td>AB</td>
<td>B</td>
<td>A</td>
<td>AB</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>PULP</td>
<td>AB</td>
</tr>
</tbody>
</table>

A = Best feasible solution B = Worst feasible solution
Results: Net profit

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Net Profit</th>
<th>Allocated volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (best feasible solution)</td>
<td>24181</td>
<td>5083</td>
</tr>
<tr>
<td>B (worst feasible solution)</td>
<td>8380</td>
<td>5081</td>
</tr>
<tr>
<td>Difference</td>
<td>15801</td>
<td>-</td>
</tr>
</tbody>
</table>

- Increase of net profit by 50-100%
- In our Case study area (demand of pine 300 000m³) €500,000 - €1,000,000 annually
Conclusions

• It is theoretically possible to compare the profitability of various logistic chains (value chains) and search for (close) optimal solutions.

• It can be only strategic or tactic tool – no operative.

• Competition on energy resources and desire to develop new processes (bio-refinery) calls for tools that can compare production chains.
Thank you