GEOMETRIC THINNING FOR FOREST BIOENERGY

Tomas Nordfjell
Dan Bergström, Rikard Wennberg, Julia Forsberg & Urban Bergsten
22% of the volume in Swedish forests is located in stands dominated by trees up to 14 cm diameter at breast height.
22% of the volume in Swedish forests is located in stands dominated by trees up to 14 cm diameter at breast height.

The total volume in those stands amount to 748 million m3 solid, and in many stands it is an urgent need of thinning.
A large number of harvester/felling heads for multi-tree thinning of small diameter, dense stands have been studied during the last 5-10 years.
The product from such thinnings is undelimbed trees, or tree-parts for energy use.
However, all results show that even when accumulating several trees, economical production can **not** be achieved when thinning of stands with diameters below 8-9 cm at breast height.
However, all results show that even when accumulating several trees, economical production cannot be achieved when thinning of stands with diameters below 8-9 cm at breast height.
Our conclusion is:
To get economy in thinning of young dense stands, a geometric approach has to be used where **MANY** trees are harvested in a single boom movement.
Our conclusion is:
To get economy in thinning of young dense stands, a geometric approach has to be used were MANY trees are harvested in a single boom movement

(An experimental rig, from a previous Phd project)
(Drawing: Per Thorneus, ”Skogen” forest magazine no. 11-2006)
The aim has been to take the promising results from the Phd thesis of Dan Bergström to a higher level of application.
This is the result from a mechanical engineering Master thesis study about designing a concept on a felling and bunching head for Boom-corridor thinning of young dense stands.
This is the result from a mechanical engineering Master thesis study about designing a concept on a felling and bunching head for Boom-corridor thinning of young dense stands.
This is the result from a mechanical engineering Master thesis study about designing a concept on a felling and bunching head for Boom-corridor thinning of young dense stands.

Adapting the width on the corridor.

Department of Forest Resource Management

Tomas Nordfjell
Building a **prototype** on a felling and bunching head for Boom-corridor thinning of young dense stands
Building a **prototype** on a felling and bunching head for Boom-corridor thinning of young dense stands
Building a **prototype** on a felling and bunching head for Boom-corridor thinning of young dense stands
Building a **prototype** on a felling and bunching head for Boom-corridor thinning of young dense stands
The real **prototype** on a felling and bunching head for Boom-corridor thinning of young dense stands
The real **prototype** on a felling and bunching head for Boom-corridor thinning of young dense stands
So far, only an initial evaluation has been made. However, it could be verified that all individual functions (i.e. felling, feeding, accumulation and handling) worked, and that the accumulation capacity was sufficient for handling all trees in most boom corridors.
The vast majority of researchers, forest company staff and machine manufacturers at an excursion concluded that the first important steps on a new harvesting technique for bioenergy thinning of young dense stands had now been taken!
Co-operation give results!

Department of Forest Resource Management

Tomas Nordfjell
Co-operation give results!

Tomas Nordfjell
Dan Bergström, Rikard Wennberg, Julia Forsberg & Urban Bergsten