Bunching stems in steep slopes for efficient yarder extraction

Mauricio Acuna¹,², Justin Skinnell³, Rick Mitchell¹,⁴ and Tony Evanson⁵

¹CRC for Forestry
²University of Tasmania
³Oregon State University
⁴WA Plantation Resources (WAPRES)
⁵SCION Research, New Zealand
Outline

• Technology in steep terrain
• Objectives and study layout
• Equipment and data collection
• Results Feller buncher
• Results Swing yarder
• Conclusions
Technology in steep terrain
Technology in steep terrain

(Amishev & Evanson 2010)
Trial objectives

- Analyse productivity and costs of a self-levelling feller buncher and swing yarder related to operational factors
- Investigate the effect of pre-bunching on the extraction phase
- Develop production and cost predictive equations
Study area
Study layout

Unbunched trees

Bunched trees

Feller Buncher plot

Swing Yarder plot
Equipment and data collection

Valmet 445 EXL

Madill 124
Results - Feller buncher

Mean time per tree (secs)

- Move-to-tree: 6.1 sec (29%)
- Swing-to-fell: 3.5 sec (17%)
- Swing-to-bunch: 6.6 sec (32%)
- Cut: 2.5 sec (12%)
- Second cut: 0.4 sec (2%)
- Second cut, Cut stump: 0.4 sec (2%)
- Fell and bunch dead trees: 0.3 sec (1%)
- Adjust bunch: 1.1 sec (5%)
- Travel: 0.4 sec (2%)

Total = 20.9 sec/tree

Move-to-tree, Re-position: Machine moving uphill in a straight line between successive tree felling and bunching activities, or machine movement laterally, adjusting the move-to-tree line.

Swing-to-fell: Machine slewing and extending the boom to position the felling head to fell a tree.

Cut: Saw operation to fell the tree.

Swing-to-bunch: Slewing the felled tree and lower to the ground or onto a bunch.

Second cut, Cut stump: A second extension of the saw to sever a tree not felled after the first cut, or a cut to lower the height of a stump.

Fell and bunch dead trees: Slewing, cutting and bunching or disposing of a dead tree.

Adjust bunch: Move trees in a bunch to reduce spread of the butts.

Travel: Machine movement (downhill) from the end of a felling swath to the start of the next.
Effect of diameter on cutting time

- Results - Feller buncher

Effect of diameter on cutting time

Graph:
- Linear relationship between DBH class (cm) and cut time (sec).
- Equation: $y = 0.5339e^{0.0534x}$
- $R^2 = 0.7322$

Table:

<table>
<thead>
<tr>
<th>Tree diameter class</th>
<th>Mean Cut time (sec)</th>
<th>Significant difference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1.67</td>
<td>a</td>
</tr>
<tr>
<td>22</td>
<td>1.78</td>
<td>a</td>
</tr>
<tr>
<td>27</td>
<td>2.29</td>
<td>b</td>
</tr>
<tr>
<td>32</td>
<td>3.21</td>
<td>c</td>
</tr>
<tr>
<td>37</td>
<td>3.81</td>
<td>d</td>
</tr>
<tr>
<td>42</td>
<td>4.77</td>
<td>e</td>
</tr>
<tr>
<td>47+</td>
<td>6.36</td>
<td>f</td>
</tr>
</tbody>
</table>

* (Values with the same letter are not significantly different at $p > 0.05$)
Results - Feller buncher

Cycle time and productivity curves

[Graph showing productivity and cycles per PMH against piece size in m³.]
Results - Swing yarder

Mean time per cycle (min) - Bunched wood

- Swing-to-outhaul: 0.31, 15%
- Outhaul: 0.34, 17%
- Inhaul: 0.59, 29%
- Drop/hook: 0.81, 39%

Mean time per cycle (min) - Unbunched wood

- Swing-to-outhaul: 0.30, 14%
- Outhaul: 0.38, 18%
- Inhaul: 0.66, 30%
- Drop/hook: 0.82, 38%

Total = 2.05 min/cycle

Total = 2.18 min/cycle

Swing-to-outhaul: Yarder swing after dropping a load at the landing chute and is ready to start a new outhaul.

Outhaul: Grapple movement downhill (empty) until it is lowered down to get a load.

Inhaul: Grapple movement uphill with a load of logs until the load is dropped at the landing chute.

Drop/hook: Grapple descending towards the ground until the logs have been secured and the grapple starts moving up towards the landing.
Results - Swing yarder

Pieces per cycle

- Bunched wood
- Unbunched wood
Results - Swing yarder

Performance measurements for a haul distance of 180 m

<table>
<thead>
<tr>
<th>Performance measurements</th>
<th>Bunched wood</th>
<th>Unbunched wood*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed haul cycles</td>
<td>142</td>
<td>42</td>
</tr>
<tr>
<td>Average pieces per cycle</td>
<td>2.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Average pieces per PMH</td>
<td>68.1</td>
<td>41.6</td>
</tr>
<tr>
<td>Average time per cycle (min.)</td>
<td>2.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Cycles per PMH</td>
<td>21.9</td>
<td>26.1</td>
</tr>
<tr>
<td>Average volume per cycle** (m³)</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Average volume per PMH (m³)</td>
<td>41.6</td>
<td>33.9</td>
</tr>
</tbody>
</table>

* All unbunched wood was manually felled

** Based on an average piece size of 0.81 m³ for the bunched wood and 0.87 m³ for the unbunched wood
Results - Swing yarder

Productivity curves

- Bunched wood
- Unbunched wood

Yarding distance (m)

Productivity (m³/PMH)
Results - Swing yarder

Effect of yarding distance and pieces per cycle
Conclusions

• In good clearfell conditions in steep terrain a tracked self-levelling feller buncher can achieve a high rate of productivity
• Bunching the trees increased the productivity of the swing yarder by 25% (19% reduction in costs)
• Mechanized felling improves safety and value recovery
Bunching stems in steep slopes for efficient yarder extraction

Mauricio Acuna1,2, Justin Skinnell3, Rick Mitchell1,4 and Tony Evanson5

1CRC for Forestry
2University of Tasmania
3Oregon State University
4WA Plantation Resources (WAPRES)
5SCION Research, New Zealand