Ergonomic characterization of wood harvesting systems in Russia

Anton Sokolov¹ and Yuri Gerasimov²

Abstract
A comparison of 14 currently applicable wood harvesting systems was assessed with respect to ergonomic point of view. For this purpose, the research method, based on the Hodge-Leman principle and the integrated work-severity rate of single machinery, was developed for ergonomic evaluation of cut-to-length, tree-length and full-tree harvesting systems. Altogether, about 150 different parameters of 36 units of equipment that impact on the ergonomics and work conditions were measured and estimated in interviews undertaken directly at forestry harvesting workplaces in 15 logging companies. Then the results were compared to the effective norms, and the degree of compliance with the stipulated values was determined. The estimates obtained for the degree of compliance were integrated. This permits a direct comparison of the workload on forestry harvesting workers such as operators, lumberjacks and choker setters. In many respects, the current ergonomic standard is good, except for the operators of cable skidders, chainsaws and choker settings.

Visibility and work postures were considered to be the most critical features influencing the operator’s performance. Problems still exist, despite the extensive development of cabins. The best working conditions in terms of harvesting systems were provided by “harvester + forwarder” in cut-to-length harvesting, and “feller-buncher + grapple skidder” in full-tree harvesting. The motor-manual tree-length harvesting performed with cable skidders showed the worst results in terms of ergonomics.

Method and data

Main integrated indicators of working conditions in the measurements

Comparison of harvesting systems

Comparison of harvesting machines by the total work-severity rates

¹ Anton Sokolov, Forest Engineering Faculty, Petrozavodsk State University, Nevsky av. 58, 185030, Petrozavodsk, Russia. e-mail: a_sokolov@psue.karelia.ru
² Yuri Gerasimov, Finnish Forest Research Institute, Joensuu, Jokipistokatu 6, 80101, Joensuu, Finland. e-mail: yuri.gerasimov@metla.fi